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TE and TM Modes in Cylindrical Metallic
Structures Filled with Bianisotropic Material

Roberto D. Graglia, Senior Member, IEEE, Maria S. Sarto, Member, IEEE,
and Piergiorgio L. E. Uslenghi, Fellow, IEEE

Abstract— Modal propagation is studied for metallic circu-
lar waveguides, coaxial cables and sectoral waveguides filled
with linear bianisotropic material. By representing the material
constitutive tensors in cylindrical coordinates, the conditions
under which TE and TM modal decoupling occurs are obtained,
and second-order differential equations for the longitudinal field
components are derived. Though the TE and TM longitudinal
field components are expressible in terms of hypergeometric
functions, a complete numerical solution scheme is, in general,
more convenient. Conventional application of finite elements
renders the differential problem numerically equivalent to a
generalized eigenvalue matrix problem, whose solution yields
the dispersion relation and cutoff frequencies of the waveguides
together with the eigenfields expression. The effects one can
obtain by varying the various coefficients of the constitutive
tensors are illustrated by several numerical results.

I. INTRODUCTION

N RECENT years there has been a growing interest in new

materials for special applications in applied electromag-
netics; these materials (e.g., chiral materials, biased ferrites,
ceramics, etc.) are all special cases of the most general linear
medium having bianisotropic constitutive relations [1]-[3].
Since additional applications are likely to occur as a conse-
quence of the introduction of novel synthetic materials, it is
important to predict the electromagnetic behavior of a general
bianisotropic medium; for example, the dispersion relation of
this medium has been studied in [4], applications to planar
layered structures have been considered in [5] while planar
bianisotropic waveguiding structures have been considered
only very recently in [6], [7]. To study guided propagation in
bianisotropic media one could use the kDB system introduced
in [1], [2]; however, no real advantage is gained by describing
the fields using the flux density vectors ID and B instead of the
electric ( E') and magnetic (H) field vectors, since the E and
H fields are needed when imposing the boundary conditions.

In this paper, we determine the conditions under which
guided propagation in circular, coaxial and sectoral metallic
waveguides filled with bianisotropic material can be described
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in terms of TE and TM modes. In Section II we discuss the
general conditions for the existence of TE and TM modes in
cylindrical coordinates; these conditions vary with the coor-
dinate system and, in fact, the conditions which apply when
rectangular coordinates are employed have been obtained in
[8].

In Section III we derive the expression of the modal field
components in terms of the longitudinal ones for the circular,
coaxial and sectoral waveguides, when TE-TM decoupling
occurs. The solutions obtained with a homogeneous filler
are then discussed in some detail and the possibility of
modifying the single-mode bandwidth of a circular waveguide
is illustrated in the simpler case of an anisotropic filler. Section
III also shows that the longitudinal electric and magnetic field
components are the eigensolutions of second-order differential
equations, subject to appropriate boundary conditions. Special
attention is devoted to the conditions to be used to numerically
deal with the circular waveguide problem.

Finally, several results are discussed in Section IV to
illustrate the effects on the waveguide dispersion diagrams
due to different choices of the constitutive parameters. The
parameters in the examples are assumed to be frequency
independent only for sake of simplicity, since the method and
the numerical code presented here are directly applicable to
frequency-dispersive media. Some of the results pertaining to
the circular coaxial waveguide have been presented in [9].

II. GENERAL CONDITIONS FOR THE EXISTENCE OF TE
AND TM MODES IN CYLINDRICAL COORDINATES

Let us consider a waveguiding structure whose axis is
the z axis of a cylindrical reference frame (p,@,z). The
waveguide is filled with bianisotropic material characterized
by the frequency-domain constitutive relations

D =c,eE + igH

0

1
B ZMOEH — C_HE (1)

where p, and €, are the free-space magnetic permeability
and electric permittivity, respectively, ¢, = 1/,/l,€, is the
velocity of light in free space while, in cylindrical coordinates,
the four dimensionless constitutive tensors g, p, £ and 7 are
represented by 3 x 3 matrices of the type £ = {ey;i,f =
1,2,3} 4., where e;¢ are constants. The assumption of con-
stant tensor coefficients in cylindrical coordinates is required
here not to violate the circular symmetry of the problems
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we intend to study. However, this assumption permits one to
consider an inhomogencous coaxial layered filler obtained, for
example, by rolling up thin layers of different homogeneous
bianisotropic material; this layered structure can be used, for
instance, as a filler of a coaxial waveguide. In other words,
we point out that the bianisotropic materials considered here
are, in general, inhomogeneous; in fact, the dyadic

. €11 €12 €13 b
(Ph2) e €22 €23 ¢ 2
€31 €32 €33/ 4, \?

is, in general, a function of space coordinates, even if the
coefficients &;, are constant. The bianisotropic medium is
lossless if ¢ = et,p = put and 9y = —¢, where the
superscript + denotes a transpose and complex conjugate [1,
chap. 1].

The modal electric and magnetic fields may be written as

E(p, ¢, 2) =e(p) exp(jme)®(z) exp(juwt)

H(p, ¢, 2) = Yoh(p) exp(jme)®(z) exp(jwt) ~ (3)

with
®(z) = exp(—jBkoz) @
and where k, = w/c,, is the normalized longitudinal

propagation constant, Z, = Y,;"! = /. /e, is the free-space
impedance and m is an integer whenever periodicity of all field
components of 27 radians in ¢ is required. In the following,
the time-dependence factor exp(jwt) is omitted and

e(p) = e,(p)P+e4(p)d + e.(p)2 )
with a similar expression for h(p).

By use of Maxwell’s equations one can express the trans-
verse field components in terms of the longitudinal compo-
nents e, h, and their derivatives. In turns, the components e,
and h, are solutions of two coupled second-order differential
equations with variable coefficients, that are difficult to solve
in the general case. The fact that, in general, these equations
are coupled shows that the waveguiding structure supports
hybrid modes.

The conditions under which these equations decouple, lead-
ing to superposition of TE and TM fields, are determined as
follows. First of all one has to distinguish the parent equation
for TM modes from the TE parent equation; this is done
by considering the two coupled differential equations in the
limit of isotropic material (where the two equations decouple).
Then, one systematically equates to zero all the coefficients of
e, and its derivatives in the TE parent equation, and all the
coefficients of h, and its derivatives in the TM parent equation.
This process, though simple in principle, is quite long and
complex in practice; it results in the following theorem:

If £11, €29 and (£11290 — €12€91) are nonzero, then TE-TM
decoupling occurs if and only if

(6)
M

€12€31 = €11€32

€21€13 = €11€23
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0 &2 O
=62 0 &3 (®)
0 &3 O oz
0 mz 0
n=|-mz2 0 73 )]
0 —ms 0/ .
€11 €21 €31
= €12 €22 €32 10
B=o 133 (10)
€13 £23 —
« poz

where « is any finite nonzero constant. Notice that the matrices
(8) and (9) representing the tensors £ and 7 are singular
and immediately prove that a chiral waveguiding structure
cannot support TE and TM modes [{10]. Conditions (6) and
(7) constrain to zero the coefficients {2,3} and {3,2} of
the inverse of £ and 73 Moreover, if the waveguiding region
comprises the axis p = 0, then the material constitutive tensors
in cartesian coordinates must be ¢-independent at p = 0.
This is a feasibility condition which, together with conditions
(6)—(10), immediately yields

€11 = €22

€21 = —€12

€13 =€3 = €31 = €32 =0

€23 =123 = 0. 1D

A bianisotropic material which complies with conditions (11)
(and (6)—(10)) is homogeneous; in fact, for example, the matrix
representing the tensor g is

€nn €12 0
e=|—-¢e12 11 O (12)
0 0 £33

both in circular and cartesian (z,y, z) coordinates, with £ =
p(¢ = 0) and § = p(p = 7/2).

1II. TE aND TM MODES IN CIRCULAR
BIANISOTROPIC WAVEGUIDES

In the following, we study several bianisotropic waveguid-
ing structures under conditions (6)—(10).

A. Field Components
By setting
kop=r 13)

the TM and TE differential equations may be written as
follows:

! 2
e m
1
d+itel(r-3
r T

+je;[_nl M—*—’U—Fuj‘
T €11
[mz (€22 —€11) | m (uern + vear)
—_ ez _.2_ ) _|_ PR S Ot
T €11 T €11

(14)

+U(u—- Z) —7236:, =0
r
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R, , m?
hlzl'f——r—-f"hz('?’ ey

gt | i) 4
r H11
b [mz (pa2 — p11) . m (vpaz + up)
—_ 2 7 -~ = _|._ - =~ - . 7
T H11 r 228!
4+ u(v - %) — fyzsh] =0 (15)
with
V=6~ (8—n2)(8 - &12) (16)

1
§ =aler1e22 — €12€21) = E(Muum — pigper) (17)

€ 13
w=ta3 — (B —€1p) > = b3~ (B—b12)—— (18
€11 Hi1
€ 31
v =13 — (B — m2)—> =13 — (B — ma) == (19)
€11 M1
€33 — €11 f13€31
.= -2 20)
€11 €11
sy = H33 — M1l #'13;//31‘ a1
Hi1 H11

Equations (14)—(21) do agree with the duality principle, that
in our case reads as follows:

e=—h, h=— —e¢,
a<=1/a, u<=wv,

Eiy = Uij,
Se & Sp.

My <= &ij,
(22)

In the case of isotropic material, (14), (15) reduce to the usual
Bessel differential equation f” + f'/r + f(p?v% — m2/r?) =
0, with p = 1,792 = (ep — B?) and where f = e,,h,
for TM and TE mode, respectively. As is well known, the
solution of this classical problem can be expressed by a linear
combination of the functions Jy,(yr) and Y., (yr), which
are the Bessel functions of order m of the first and second
kind, respectively; in the isotropic case 7y is the normalized
radial propagation constant. A Bessel differential equation as
above is also obtained from (14) and (15) for a homogeneous
medium (i.e., under conditions (11), which imply u = v = 0).
The solution of these simpler bianisotropic cases is a linear
combination of the functions J,,(pyr) and Y,,(pyr), with
p? = e33/e11, 33/p11 for TM and TE modes, respectively
(see, for example, the discussion relative to the results of
Fig. 2 later on).

To see a conceptually simpler application of the previous
result, let us consider a circular waveguide filled with a
homogeneous anisotropic material (f = £ = 0) with diagonal
p = diag [tta, fia, pas) and € = oI, where I is the identity
matrix and where Jha, 33 and e, are real. Here, conditions
(11) are satisfied as a special case, with p = 1,+/ps3/tq
for TM and TE mode, respectively; while (16) yields 42 4
B? = eqpe. In this case, the dispersion diagrams of all
the TM modes are equal to those relative to an isotropic
waveguide with ey = g4, (since h, = 0 for TM modes);
conversely, the cutoff frequencies of the TE modes are 1/p
-times those of the isotropic waveguide though. for very large
value of frequency (where h, = 0 or, equivalently, v =~
0), one still gets an asymptotic value of 3% = e,p,. The
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TE;; single-mode bandwidth increases for increasing value
of pss/pe and for pss/pe >1 is wider than that of the
isotropic waveguide; for +/pas/ e < 1.841/2.405 the first
mode supported by the waveguide is the TMg; . Obviously, the
TEq; single-mode bandwidth can also be modified by varying
the £33/, ratio of a diagonal electric premittivity tensor
e = diag [€a, €4, €33). For all these homogeneous anisotropic
waveguides the topography of the transverse modal-fields is
equal to that of an isotropic waveguide with ey = €4,
[see (25)]. The same result can be shown to hold in cartesian
coordinates for rectangular homogeneous waveguides.

By returning to the most general case, it is important
to observe that, as opposed to what happens for isotropic
materials, (14) and (15) yield, in general, a different couple of
second-order differential equations by changing m into (—m).
The differential equations become even in m iff

€12 + €21 =0
g12{u —v) =0. (23)

These conditions are satisfied independently from the value of
B if conditions (11) hold, or if

€12 + €21 =0
€93 + €32 =0

e12(§23 — m23) =€23(&12 — Mi2)- (24)
By use of (6) and (7), one readily proves that conditions
(24) imply €13 = e31. In particular, note that the differential
equations become even in m for £15 = £93 = 0, a condition
which implies 93 = €32 = 0 (and p12 = po1 = ties = sz =
0).

Once the longitudinal components are known, the trans-
verse field components are easily obtained from Maxwell’s
equations; for TM modes one has

€13
V(B - &12) — ’725
€p m
€4 1 —(B — £12)
h -2 " m €z
h” 2 —UVEg1 — —€22
¢4 T™M
Vel + 7612
B — &2
J 0 /
— = e 25
¥2 | —ex # 25)
€11

whereas the TE transverse components are obtained by duality
from (25). In general, the longitudinal components of D and
B are different from zero; for example, for TM modes, the
constitutive equations yield

m
Biru = I:

CoT

) g
— (B~ €12) — ﬁ e (26)

-
B. Boundary Conditions

By setting to zero the electric field components ey and e,
on the metal waveguide boundary, one obtains the boundary
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conditions for (14) and (15)
' (27)
(28)

Notice that the boundary condition (28) (for TE modes) is,
in general, 3-dependent; in case of isotropic material, or for
w = 0 and g2 = 0 (€21 = 0), the previous expressions
simplify to the usual ones.

The above boundary conditions suffice to solve the coaxial
waveguide problem whereas, to find the modes of a circular
waveguide, a different condition at r = 0 is required to
ensure bounded field solutions. In the particular case of
isotropic material, use of this boundary condition eliminates
from the Bessel problem the solutions Yy, (yr). Furthermore,
an acceptable solution under a physical point of view must
yield fields (D, B, E, and H fields) having the correct degree
of continuity on the axis; this results in a second condition at
r = 0, which is a continuity condition that can not be used
to integrate the differential equation, but is used to accept
or reject a posteriori the mathematical modal-solutions of the
differential problem. As a matter of fact, as we will see further
on, the continuity condition is automatically satisfied under
conditions (11) (homogeneous medium); therefore these are
the only conditions required to correctly formulate, also under
a physical point of view, the circular waveguide problem’.
For azimuthal index m = 0, an analysis of the terms of
order (1/r) in (14), (15) leads to the boundary conditions
e, + jve, = 0 and A/, + juh, = 0; in this case the regularity
of the fields on the axis r = 0 (continuity condition) requires
the vanishing of the radial and azimuthal field components at
r = 0. Conversely, for m # 0, the regularity conditions are
obtained after setting e, = re, and h, = rh/, for small values
of r (boundary conditions), in order to first ensure bounded
field solutions on the polar axis. The conditions at » = 0 are
reported in Table I. Notice that, for m = +1, the regularity of
the fields on the axis does not necessarily imply the vanishing
of the transverse field components at r = (. Indeed, in
cartesian coordinates (£ = p(¢ = 0),§ = p(¢ = w/2)), the
TM,,=+1 fields on the polar axis are:

E __E4+gmy|  §(B-&12) '
MM - [mmeu +jelz>] 2(e)es,

m =%l (29)

while the TE,,—., fields are given by duality.

Observe that under conditions (11) (which imply v = v =
0), the continuity conditions of Table I are satisfied by arbitrary
values of the longitudinal fields (e,,h,) for m = 0 while,
for m = =1, one always has €, = a. and h, = ay
at 7 = 0. Once again, under conditions (11), it turns out
that the solutions of the homogeneous circular waveguide
problem are given by the Bessel functions J,,(pyr) which,
at r = 0, satisfy the boundary condition and naturally agree
with the continuity condition. On the contrary, if we were to

1 According to conds. (11), a medium having constant tensor coefficients in
cylindrical coordinates on the whole circular waveguide cross-section must

be homogeneous. The same condition is independently obtained here by
considering the continuity condition at p = 0 for an inhomogeneous medium.
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TABLE 1
IN OrDER TO FIND THE MODES OF A CIRCULAR WAVEGUIDE, CONDITIONS AT
r = 0 ARE REQUIRED TO ENSURE FIELD SOLUTIONS WHICH ARE BOUNDED AND
CONTINUOUS WHILE CROSSING THE POLAR AXIS IN THE TABLE, b.c. MEANS
BouUNDARY CONDITION, WHILE c.c. MEANS CONTINUITY CONDITION For
m = +1, a., ap, DENOTE TWO (ARBITRARY) CONSTANTS. FOR AN ISOTROPIC
MEDIUM, THE CONDITIONS REPORTED IN THE TABLE REDUCE TO THE
UsuaL CONDITIONS SATISFIED BY THE BESSEL FUNCTIONS Jim (77)

Regularity conditions at r=0 for TMyp and TEm
modes in a circular bianisotropic waveguide
m=0 m =zl |m|>2
b.c e, +gve, =0 e, =0 e, = 0
€138, = €3¢, = a, for ep—en=ym(en+en)
cc e, = e =0
= e = 0 0 for ez —eu # jm (612 + &)
b.c. R+ juh, =0 h,=0 hy =0
tash, = pash, = ap for poy — pu = ym (paa + )
c.c. b, = K, =0
= €ash, =0 0 for pog — pin1 # Jm (pa2 + pa1)

assume that, unphysically, conditions (11) are not satisfied,
the mathematical solutions of the differential problem do not
fulfil the continuity condition (for example, one finds that the
m = 0 modes violate the continuity condition).

In general (ie., for £&12 # 0,712 # 0 and/or e12 # 0), the
transverse field components of a circular waveguide filled with
a homogeneous bianisotropic material are, for given values of
p, 3, and ~, different from the ones observed in the isotropic
case having normalized radial propagation constant equal to
Py, even if the longitudinal components are given by the same
Bessel functions of the first kind [see, for example, (25)].

Obviously, the bianisotropic filler of a coaxial waveguide
does not need to comply with conditions (11); in this case the
filler can also be realized as a coaxial layered (inhomogeneous)
structure and one has more degrees of freedom since €3 and
723 are not constrained to zero.

C. TEB Modes in Coaxial Waveguides

The results derived previously are not valid for v = 0,
where (16) yields

2+ &2 T /(2 —&12)2 + 46
- 2

B (30)

with 8 = F,/ue for isotropic material. However, this case is
simpler than the general one and is readily solved in an analytic
way, thereby proving the possible existence of a TEB mode
in a coaxial waveguide, that is to say a mode having a zero
longitudinal component for both the e and B fields. In fact,
for coaxial waveguides at v = 0, the boundary conditions and
Maxwell’s equations might be satisfied by eigenficlds having
the following form:

—k, exp(;—jur) B(2)
B— ’“"M@(z)

¢ (31)

Slw ®
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though one has to distinguish between the two cases u = 0
and u # 0 to assess the possible existence of this mode and
to express the h and D fields.
1) For u = 0 (e.g., isotropic or homogeneous bianisotropic
material), there always exists a TEB mode which is also
TEM. In this case one has exp(—jur) = 1 and

k end —enp
h=—"d(
B — &2 )
Bkogo e11p + end
D= 3(z . (32)
Ty
2) For u # 0 (and y = 0), there exists a TEB mode only if
1133 = Q€33 (33)
£11€33 = £13€31. (34)

In this case the possibility of considering isotropic or
homogeneous bianisotropic materials is excluded by
condition (34), and the TEB mode is not transverse
magnetic (i.e., it is a TE mode); the h and D fields are?

h=M [—i{—‘qﬁ ~ (%5 + 831)/1 + E11Z]

~

€11 ., €21 U
D=¢, ML = d
EﬁM[Tp+<T +831+811,3>¢

€11 U
2
with:
M= kow@(z)‘ (36)

B = &2
Since 2 -V X e = 0 [see (31)], one can define a potential
function ¥, in the transverse plane z = const., such that
e = —V, ¥ (with V, = V—20/9%). For a coaxial waveguide
of inner radius p = b and outer radius p = a, the voltage
difference V,,(z) between the inner and outer conductor is
expressed in terms of sine and cosine integrals

Val2) = @(2)[Cilubop) - jSiCubop)Zs (T

with V,(z) = ®(z)In(a/b) for v = 0. The current I,(z)
flowing in the inner conductor is easily evaluated by use of
Maxwell-Ampere’s law. In particular, for v = 0, this current is
simply given by the circulation of H = h/Z,, since 2-D = 0.
The current 1,,(z) has the following general expression

2rY,e11
(B = &i2)
which, for u = 0, reads 1,(z) = 27Y,e11®(2)/(8 — £12).

The impedance of the cable for the TEB mode is Z, =
V../ I, which, for u = 0, yields
Yo B—¢

( 12)1 ( /b)

IO_Z 27e

L,(z) = exp(—juk,b)®(z) (38)

Z. = (ﬂ 512) ) n(o/t).

(39
In the limit of isotropic material, (39) yields the well-known
result Z, = £ In(a/b), with Z = Z,\/p/e.

2 Notice that (20), (21) under conditions (33), (34) yield se = 85, = —1;in
this particular case, the coefficient multiplying v2 in both (14) and (15) does
vanish.
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D. Sectoral Waveguide

Let us now consider a sectoral waveguiding structure whose
perfectly conducting walls bound the region {b < p < a;0 <
¢ < ¢,}, with ¢, < 2x. The sectoral waveguide is obtained
by filling with perfectly conducting material the angular region
¢: {po—271 < ¢ < 0} of a coaxial waveguide with outer radius
p = a and inner radius p = b > 0; the case b = 0 is excluded
because of the complexity of the boundary conditions at the
edge of the wedge.

Even under conditions (6)—(10), the modes supported by this
structure are, in general, hybrid modes. TM and TE modes may
appear only when it is possible to combine the two modes of
index +m of the coaxial waveguide into a single mode, so to
satisfy the boundary conditions on the metal septum. Hence,
TE and TM modes may exist only under the supplemental
conditions (24); the differential equations (14) and (15) relative
to these modes become even in m.

In fact, it is easily found that the sectoral waveguide
supports TM modes only when conditions (24) are valid; the
TM eigenfields have the following form (the fields vanish for
m = 0):

e =® (2)[(e,, pte., 2)sinmd—jmes. cosmd]
h=® (2)[(hy,p+hy,b)sin md+im(h,, p+hs, ) cosmg)
m=

™

n with n > 1 and integer (40)
with
— 2613 -
v(B —&2) — v
(B =&12)
ep, —_
r
€p.
b, _ 1 Ve
he, G Vel ©
Z”° e22
$e 4 TM r
e
L r J
B =12
0
_ L —€21 ’
2| en €z, (41)
0
0

where the subscript s (¢) refers to terms proportional to
sinmg (cosma).

Conversely, the sectoral waveguide supports TE modes only
if £19 = €21 = 0 (which is a particular case of conditions (24),
with €93 = €33 = 0 and W12 = U1 = Mo3 = U32 = 0) In
this case, the TE eigenfields have the following form (valid
also for m = 0):

e = &(z)[ey, cosmep + jme,, p sinme]
h=®(2)[(hp.p+ h, 2)cosme + jmh¢s¢s1n mae)

with » > 0 and integer 42)

T
m =1n——-
o
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with:
)
€ps r
—up11
€p. _ 1 (;8
=— — M12) hs,
Z% '72 —T__
. M3
pe~TE u(B —m2) — 72—
M1t
0
_ i —H11 ’
P 0 h,. “43)
B — m2

The previous eigenfields fulfil the boundary conditions on the
metal septum; to solve (14), (15) one has to further sete,, =0
and b, = —juh., at r = koa,kob.

IV. NUMERICAL RESULTS

Our differential problem is easily solved numerically by
applying the finite element method [11]. Along the waveguide
radial axis n nodes are defined as the extreme points of
(n — 1) adjacent subintervals. The first node is located at
r = kob, the last one at r = k,a,a and b being the outer
and inner waveguide radius, respectively, (b = 0 for a circular
waveguide).

By introducing Hermite expansion functions on each subin-
terval, one has to solve for 2n unknowns; these are the values
of the longitudinal field component (e, or h,) and of its first
derivative at each of the n nodes [12]. A Galerkin testing
procedure is then applied to obtain a discretized problem
in matrix form. Notice that a similar approach has also
been used in the numerical solution of integral equations
in [13], though a delta sampling procedure was there used
to test the equations. Cubic Hermite expansion functions
were chosen here to allow the strong enforcement of the
boundary conditions; as opposite to what happens when using
linear expansion functions (elements), which would require to
implement the boundary conditions of our problem in a weak
form.

For any given value of the azimuthal index m, the differ-
ential problem assumes the following discretized form:

Az + BBz + °Cz = 0 (44)

where A, B and C are square sparse matrices having band-
width equal to six; x is the unknown column vector (eigen-
vector), and 3 is the unknown normalized longitudinal prop-
agation constant (eigenvalue). By setting y = (=, problem
(44) is reduced to the following linear generalized eigenvalue
problem (of doubled size):

IR e

where 0 is the null matrix; problem (45) is numerically solved
by use of standard library routines.

All the results reported in this section have been obtained
with n = 28 (i.e., 56 unknowns) and are relative to € = 41
and p = I. This choice of parameters renders the differential
equations even in m [see (24)], a condition which simplifies
the graphical presentation of the results. Furthermore, for sake

(45)
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Relp]

kpa Im[B ]

Fig. 1. Dispersion diagram of the first modes of a circular waveguide of
radius a, filled with isotropic material ¢ = 41,0 = L = 5 = 0. The
exact analytical results (solid-lines) are compared with the dashed-line results,
obtained numerically.

of simplicity, the parameters of the examples discussed in this
Section are assumed to be frequency independent, even though
our numerical code can directly deal with frequency-dispersive
media.

In Fig. 1 we report the dispersion diagram of the first modes
of a circular isotropic waveguide (£ = 7 = 0) of radius a.
The figure reports the value of the normalized longitudinal
constant 3 when the modes are above cutoff and the value
of k,a Im[3] when modes are below cutoff. The dashed-line
results, obtained numerically, are compared with the analytical
results reported by solid-lines. Notice that our numerical
results are undistinguishable from the analytical ones; the only
difference is due to the presence of one unphysical solution
of the TE equation for m = 0. In the figure, this solution
is labeled as TEq and yields 8 = 2V(k,a), which is the -
value given by (30) for v = 0. Since the numerically obtained
TEqo eigenfield is constant along the waveguide radial axis
(h; = const.), all the TEgq transverse field components are
zero. Hence, the TEqgg solution can be regarded as a static
solution and must be discarded. However, notice that this is a
correct solution of (15), (28) for m = 0 and v = 0; that is to
say for (3 as given by (30).

Fig. 2 reports the numerically obtained dispersion diagrams
for the first two modes (TE;; and TMp;) of a circular
waveguide of radius a, filled with the homogeneous lossless
bianisotropic material £33 = 723 = 0,&12 = —1m2 = js;
for s = 1.2, 0.6 and O (isotropic case). For this choice
of parameters 72 is an even function of B and the figure
reports only the value of (3 relative to progressive waves
(8 = Bp), since B, = —f3, for regressive waves. Fig. 2 does
not report the TEgo unphysical solutions; for s # 0 the h,
field component of these numerical solutions is not constant
in p, but it does yield zero transverse field components of E
and H, as in the isotropic case s = 0. The THEyy dispersion
diagrams always exhibit a constant value of 3 for all k,a,
with 8 given by (30); for the other modes, the dispersion
diagrams for large values of k,a asymptotically tend to this
value of 3. Notice also that the dispersion diagrams of Fig. 2
coincide with those relative to an isotropic material with
et =2+ 0% = 6 — mab1a = 4 — 52, In fact, in the case of
Fig. 2 one has p = 1 so that, for example, the two TE;; modal
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Fig. 2. TE;; and TMgp; numerically obtained dispersion diagrams

for a circular waveguide of radius «a, filled with bianisotropic material
ge=4L,p = L, {23 = 23 = 0,812 = —n12 = js: for s = 1.2, 0.6 and
0 (isotropic case). The dispersion diagrams in the figure coincide with those
relative to an isotropic material with ey = 42 + 32 = § — 12612 = 4-— s2.

solutions for the longitudinal magnetic field can be written as
follows:

H, = —j7"Y,8(2) 11 () (‘;fﬁjf). (46)

The corresponding TE;; modal electric fields are
n J i
E= ()b (o8 ) £p7 02 (1)) @

r cos ¢
while H; = Y, (0 + js)z x E is the transverse magnetic field.
Thus, the TE;; transverse electric and magnetic fields are in
quadrature for 5 = 0 and s # 0 while, as well known, H; =0
in the isotropic (s = 0) case at 3 = 0.

Fig. 3 reports the TE;; dispersion diagram of a circular
waveguide of radius «, filled with the homogeneous material
€23 = M3 = 0,&12 = iy = s(1 + j), where s = 1.2 and
the superscript * denotes a complex conjugate. In this case >
is an even function of (3 — s), and one finds that 3 has a
constant real part equal to s below cutoff. The figure reports
the results for both the regressive and progressive mode;
asymptotically, for large value of k,a, one has 8 = —0.4,
2.8 for regressive and progressive mode, respectively (in fact,
(30) yields 8 = s F V4 — s2).

Fig. 4 report the dispersion diagrams of coaxial bian-
isotropic waveguides of outer radius p = aq, inner radius
p = b with a/b = 12.2. The coefficients of 5 and ¢ where
choosen so to obtain 8, = —f3, for regressive modes.
where 0 = (3, for progressive waves. Fig. 4(a) shows the
results for the first four modes obtained with a homogeneous
filler 93 = m23 = 0 (e, u = 0),12 = —m2 = js; for
s = 1.2 and O (isotropic case). In this case the TEB mode
is a TEM mode with impedance Z, ~ 75[Q], (60 — j45)[Q)]
for s = 0 and 1.2, respectively. Since the coefficients of
the constitutive tensors and the cable impedance must be
real at w = 0, the results of Fig. 4 are not significant at
w = 0; obviously, as said previously, one can not neglect
frequency-dispersion toward zero frequency. Fig. 4(b) reports
the dispersion diagrams of the first three modes of a coaxial
cable with u # 0 (inhomogeneous filler); these results were
obtained by setting 512 = {3 = —a2 = —Noy = jL.2.
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Fig. 3. Numerically obtained dispersion diagram of the first mode (TE1;)
of a circular waveguide of radius a, filled with bianisotropic material
e=4Lp =1L &3 =mns =0,612 = 07y = 1.2 (14). The figure reports
the resulfs relative to both the regressive and progressive mode. Notice how
/3 has a constant real part equal to 1.2 below cutoff.
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Fig. 4. Numerically obtained dispersion diagrams for coaxial wavegmides
having outer radius p = a, inner radius p = b, with a/b = 12.2: the
waveguide bianisotropic fifler has ¢ = 41, ¢ = L. (a) at top, the figure reports

the results obtained with £23 = 193 = 0.£19 = —n19 = 75, for s = 1.2 and
0 (isotropic case). (b) at bottom, the dispersion diagrams obtained by setting
£12 = £23 = —n12 = —1j23 = 31.2 are shown; in this case the TEM mode

is not supported and the first mode of the coaxial cable is the TEq;.

Since this structure does not support a TEB mode (see
Section III-C) the first mode of the coaxial cable is the TE;;.
The results of Fig. 4 illustrate the effects on the dispersion
diagrams due to different choices of the 5 and £ parameters.
For diagonal ¢ and g it is sufficient to choose £33 # 0 to
eliminate the TEM mode of the coaxial cable; for £33 = 0
the impedance of the TEM mode is modified by choosing an
imaginary value for {2, while the cable remains lossless for

M3 = —&33, M2 = —E&oy.
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V. CONCLUSION

The conditions under which TE and TM modal decoupling
occurs in metallic circular waveguides, coaxial cables and sec-
toral waveguides filled with bianisotropic material have been
presented. For the different waveguides considered, the modal
(TE and TM) transverse-field components have been expressed
in terms of the longitudinal modal components; these, in turn,
are the eigensolutions of second-order differential equations,
subject to appropriate boundary conditions. The boundary con-
ditions have been derived, with special attention to those useful
to (numerically) deal with the circular waveguide problem.
Since our differential model has been derived by working
in the frequency-domain, the results presented are directly
applicable to consider frequency-dispersive media.

The differential problem has been numerically solved by
applying the Finite Element method -and by expanding the
modal longitudinal field components in terms of Hermite
cubic functions. The dispersion relations. together with the
waveguide eigenfield expressions were numerically obtained
as solution of linear generalized eigenvalue problems. Sev-
eral numerical results have been reported to illustrate the
different effects one can obtain by varying the various tensor
coefficients of the waveguide bianisotropic filler.
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