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TE and TM Modes in Cylindrical Metallic
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Abstract— Modal propagation is studied for metallic circu-
lar waveguides, coaxial cables and sectoral waveguides filled
with linear bianisotropic material. By representing the material

constitutive tensors in cylindrical coordinates, the conditions
under which TE and TM modal decoupling occurs are obtained,

and second-order differential equations for the longitudinal field

components are derived. Though the TE and TM longitudinal

field components are expressible in terms of hypergeometric

functions, a complete numerical solution scheme is, in general,

more convenient. Conventional application of finite elements
renders the differential problem numerically equivalent to a

generalized eigenvalue matrix problem, whose solution yields
the dkpersion relation and cutoff frequencies of the waveguides
together with the eigenfields expression. The effects one can

obtain by varying the various coefficients of the constitutive

tensors are illustrated by several numerical results.

I. INTRODUCTION

I N RECENT years there has been a growing interest in new

materials for special applications in applied electromag-

netic; these materials (e.g., chiral materials, biased ferrite$

ceramics, etc.) are all special cases of the most general linear

medium having bianisotropic constitutive relations [1]–[3].

Since additional applications are likely to occur as a conse-

quence of the introduction of novel synthetic materials, it is

important to predict the electromagnetic behavior of a general

bianisotropic medium; for example, the dispersion relation of

this medium has been studied in [4], applications to planar

layered structures have been considered in [5] while planar

bianisotropic waveguiding structures have been considered

only very recently in [6], [7]. To study guided propagation in

bianisotropic media one could use the kDB system introduced

in [1], [2]; however, no real advantage is gained by describing

the fields using the flux density vectors D and B instead of the

electric (E) and magnetic (H) field vectors, since the E and

IZ fields are needed when imposing the boundary conditions.

In this paper, we determine the conditions under which

guided propagation in circular, coaxial and sectoral metallic

waveguides filled with bianisotropic material can be described
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in terms of TE and TM modes. In Section II we discuss the

general conditions for the existence of TE and TM modes in

cylindrical coordinates; these conditions vary with the coor-

dinate system and, in fact, the conditions which apply when

rectangular coordinates are employed have been obtained in

[8].

In Section III we derive the expression of the modal field

components in terms of the longitudinal ones for the circular,

coaxial and sectoral waveguides, when TE-TM decoupling

occurs. The solutions obtained with a homogeneous filler

are then discussed in some detail and the possibility of

modifying the single-mode bandwidth of a circular waveguide

is illustrated in the simpler case of an anisotropic filler. Section

III also shows that the longitudinal electric and magnetic field

components are the eigensohttions of second-order differential

equations, subject to appropriate boundary conditions. Special

attention is devoted to the conditions to be used to numerically

deal with the circular waveguide problem.

Finally, several results are discussed in Section IV to

illustrate the effects on the waveguide dispersion diagrams

due to different choices of the constitutive parameters. The

parameters in the examples are assumed to be frequency

independent only for sake of simplicity, since the method and

the numerical code presented here we directly applicable to

frequency-dispersive media. Some of the results pertaining to

the circular coaxial waveguide have been presented in [9].

II. GENERAL CONDITIONS FOR THE EXISTENCE OF TE

AND TM MODES IN CYLINDRICAL COORDINATES

Let us consider a waveguiding structure whose axis is

the z axis of a cylindrical reference frame (p, ~, z). The

waveguide is filled with bianisotropic material characterized

by the frequency-domain constitutive relations

D = cogE + :<H
0

(1)

where KO and SO are the free-space magnetic permeability

and electric permittivity, respectively, CO = 1/- is the

velocity of light in free space while, in cylindrical coordinates,

the four dimensionless constitutive tensors g, g, & and q are—
-e =represented by 3 x 3 matrices of the type E = {5ZL; t,

1,2, 3}P4,, where ~~1 are constants. The assumption of con-

stant tensor coefficients in cylindrical coordinates is required

here not to violate the circular symmetry of the problems
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we intend to study. However, this assumption permits one to

consider an inhomogeneous coaxial layered filler obtained, for

example, by rolling up thin layers of different homogeneous

bianisotropic material; this layered structure can be used, for

instance, as a filler of a coaxial waveguide. In other words,

we point out that the bianisotropic materials considered here

are, in general, inhomogeneous; in fact, the dyadic

‘p%2S),,.(O
is, in general, a function of space coordinates,

coefficients Cie are constant. The bianisotropic

lossless if E = E+, p = p+ and g = –~+,—

(2)

even if the

medium is

where the

superscript + denotes a transpose and complex conjugate [1,

chap. 1].

The modal electric and magnetic fields may be written as

I!/i’(p, 4, z) = e(p) exp(jm@)@(z) exp(jwt)

II(p, ~, .z) = YOh(p) exp(jnwj)~(z) exp(jwt) (3)

with

~(z) = exp(–j/3kOz) (4)

and where ko = w/co,,6 is the normalized longitudinal

propagation constant, Zo = YO–l = ~= is the free-space

impedance and m is an integer whenever periodicity of all field

components of 2T radians in C) is required. In the following,

the time-dependence factor exp(jwt) is omitted and

e(p) = eP(P)B + e~(~)i + ez(~)~ (5)

with a similar expression for h(p).

By use of Maxwell’s equations one can express the trans-

verse field components in terms of the longitudinal compo-

nents eZ, hz and their derivatives. In turns, the components e~

and hz are solutions of two coupled second-order differential

equations with variable coefficients, that are difficult to solve

in the general case. The fact that, in general, these equations

are coupled shows that the waveguiding structure supports

hybrid modes.

The conditions under which these equations decouple, lead-

ing to superposition of TE and TM fields, are determined as

follows. First of all one has to distinguish the parent equation

for TM modes from the TE parent equation; this is done

by considering the two coupled differential equations in the

limit of isotropic material (where the two equations decouple).

Then, one systematically equates to zero all the coefficients of

e= and its derivatives in the TE parent equation, and all the

coefficients of h. and its derivatives in the TM parent equation.

This process, though simple in principle, is quite long and

complex in practice; it results in the following theorem:

If &ll, E22 and (E11S22 – C1X21) are nonzero, then TE-TM

decoupling occurs if and only if

S12&31 = &ll&32 (6)

C21&13 = &llE23 (7)

where @is any finite nonzero constant. Notice that the matrices

(8) and (9) representing the tensors ( and v are singular

and immediately prove that a chiral waveguiding structure

cannot support TE and TM modes [10]. Conditions (6) and

(7) constrain to zero the coefficients {2,3} and {3,2} of

the inverse of g and p. Moreover, if the waveguiding region

comprises the axis p SO, then the material constitutive tensors

in cartesian coordinates must be @-independent at p = O.

This is a feasibility condition which, together with conditions

(6)-(10), immediately yields

&ll = cm
E21 = —&12

S13 = &23 = S31 = :32 = O

&3 = 77X3 = o. (11)

A bianisotropic material which complies with conditions (11)

(and (6)-(10)) is homogeneous; in fact, for example, the matrix

representing the tensor E is

‘=(::2‘:i3) ’12)
both in circular and cartesian (z, V, z) coordinates, with x =

~(~= 0) and Y = @((b = T/i).-
III. TE AND TM MODES IN CIRCULAR

BIANISOTROPIC WAVEGUIDES

In the following, we study several bianisotropic

ing structures under conditions (6)–(10).

A. Field Components

By setting

kop = r

waveguid-

(13)

the TM and TE differential equations may be written as

follows:
/ m2

()
e~+$+ez T2— —

l-z

[

m (s12 + EM)
+ je~ ; +’U+’U

&ll 1

[

_ ez m2 (S22 – EH) m (ZLEILI + VSZ1)

I-2
+;

&ll Cll

‘v(u-:)-72’el ‘0
(14)
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“+:+’+2-$)

with

72 = ~ – (P – m2)(P’ – ’52) (16)

6 = a(&ll&2’ – E12S’1) = ;(V111J22 – plzp’1) (17)

C33 — EII E13&31
se = — (20)

Ell &;l

Sh = P33 – Pll p13431
(21)

All – ‘“ Lil

Equations (14)–(2 1) do agree with the duality principle, that

in our case reads as follows:

a * 1/(2, ‘we+v, ‘e ~ .’h. (22)

In the case of isotropic material, (14), (15) reduce to the usual

Bessel differential equation j“ + f ‘/r + f (p2v2– m2/r2) =
O, with p = 1,72 = (CW - /32) and where f = . . . h,

for TM and TE mode, respectively. As is well known, the

solution of this classical problem can be expressed by a linear

combination of the functions J~ (-p) and Ym (VT), which

are the Bessel functions of order m of the first and second

kind, respectively; in the isotropic case T is the normalized

radial propagation constant. A Bessel differential equation as

above is also obtained from (14) and (15) for a homogeneous

medium (i.e., under conditions (11), which imply u = v = O).

The solution of these simpler bianisotropic cases is a linear

combination of the functions Jm (yyr) and Ym (pyr), with

P2 = ‘33/&ll, P33/P1l for TM and TE modes> respectively
(see, for example, the discussion relative to the results of

Fig. 2 later on).

To see a conceptually simpler application of the previous

result, let us consider a circular waveguide filled with a

homogeneous anisotropic material (q = ~ = O) with diagonal

P = diag [u., v., P33] and E = E.~, w~ere I is the identity
~atrix and where Y., ,LL33and e. are real. Here, conditions

(11 ) are satisfied as a special case, with p = 1, ~=

for TM and TE mode, respectively; while (16) yields ~’ +

,62 = Ea~a. In this case, the dispersion diagrams of all

the TM modes are equal to those relative to an isotropic

waveguide with Ep = cap. (since h. = O for TM modes);

conversely, the cutoff frequencies of the TE modes are l/gJ

times those of the isotropic waveguide though. for very large

value of frequency (where h, x O or, equivalently, v x

O), one still gets an asymptotic value of ~’ = EaLLa. The

TEII single-mode bandwidth increases for increasing value

of p33 /pm and for K33/,LLa>1 is wider than that of the

isotropic waveguide; for ~= z 1.841/2.405 the first

mode supported by the waveguide is the TMo1. Obviously, the

TE1l single-mode bandwidth can also be modified by varying

the &33/sa ratio of a diagonal electric premittivity tensor

~ = diag [s.,s~, s33]. For all these homogeneous anisotropic—
waveguides the topography of the transverse modal-fields is

equal to that of an isotropic waveguide with e,a = c~pa

[see (25)]. The same result can be shown to hold in cartesian

coordinates for rectangular homogeneous waveguides.

By returning to the most general case, it is important

to observe that, as opposed to what happens for isotropic

materials, (14) and (15) yield, in general, a different couple of

second-order differential equations by changing m into ( –m).

The differential equations become even in m iff

Elz + &zl = O

E12(U– v) =0. (23)

These conditions are satisfied independently from the value of

/3 if conditions (11) hold, or if

&12 + S21 = o
E23 + &3z = O

&12(<23 – ~23) =E23(f$12 – ~12): (24)

By use of (6) and (7), one readily proves that conditions

(24) imply S13 = E31. In particular, note that the differential

equations become even in m for :12 = ezl = O, a condition

which implies &23 = S32 = O (and p12 = p21 = K23 = U32 =

o).
Once the longitudinal components are known, the trans-

verse field components are easily obtained from Maxwell’s

equations; for TM modes one has

v(/3 – flz) – 72:

[1 ~

ep
1% —_ :(8-(12)

‘P – 7 m
—v&’l — —c”

‘~ TM ‘d-
V&lI + —EI2

‘r

. P’-C12

[1

o e,——
:2 —E’l z

ell

ez

(25)

whereas the TE transverse components are obtained by duality

from (25). In general, the longitudinal components of D and

1? are different from zero; for example, for TM modes, the

constitutive equations yield

B –~
[ 1

~(P–t12)– ~ e. (26)
‘TM — Cor ‘y

B. Boundary Conditions

By setting to zero the electric field components e+ and eZ

on the metal waveguide boundary, one obtains the boundary
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conditions for (14) and (15)

ez=O (27)

“=-’(u+%)hz(28)

Notice that the boundary condition (28) (for TE modes) is,

in general, ~-dependent; in case of isotropic material, or for

u = O and PM = O (.ZM = O), the previous expressions
simplify to the usual ones.

The above boundary conditions suffice to solve the coaxial

waveguide problem whereas, to find the modes of a circular

waveguide, a different condition at r = O is required to

ensure bounded field solutions. In the particular case of

isotropic material, use of this boundary condition eliminates

from the Bessel problem the solutions Ym (~r). Furthermore,

an acceptable solution under a physical point of view must

yield fields (D, 13, E, and Zil fields) having the correct degree

of continuity on the axis; this resuIts in a second condition at

r = O, which is a continuity condition that can not be used

to integrate the differential equation, but is used to accept

or reject a posteriori the mathematical modal-solutions of the

differential problem. As a matter of fact, as we will see further

on, the continuity condition is automatically satisfied under

conditions (11 ) (homogeneous medium); therefore these are

the only conditions required to correctly formulate, also under

a physical point of view, the circular waveguide probleml.

For azimuthal index m = O, an analysis of the terms of

order (l/r) in (14), (15) leads to the boundary conditions

e; + jve. = O and h: + juh, = O; in this case the regularity

of the fields on the axis r = O (continuity condition) requires

the vanishing of the radial and azimuthal field components at

r = O. Conversely, for m # O, the regularity conditions are

obtained after setting e= = re~ and h. = rhj for small values

of r (boundruy conditions), in order to first ensure bounded

field solutions on the polar axis. The conditions at r = O are

reported in Table I. Notice that, for m = +1, the regularity of

the fields on the axis does not necessarily imply the vanishing

of the transverse field components at r = O. Indeed, in

cartesian coordinates (t = @(q$= O), j = 2(+ = 7r/2)), the

TMm=tl fields on the polar axis are:

m=+l (29)

while the TEn=&l fields are given by duality.

Observe that under conditions (11) (which imply u = v =

O), the continuity conditions of Table I are satisfied by arbitrary

values of the longitudinal fields (eZ, hz ) for m = O while,

for m = +1, one always has e: = ae and hi = ah

at r = O. Once again, under conditions (1 1), it turns out

that the solutions of the homogeneous circular waveguide

problem are given by the Bessel functions J~ (pyr) which,

at r = O, satisfy the boundary condition and naturally agree

with the continuity condition. On the contrary, if we were to

1Accordingto ~Ond~.(1l), ~ nledurn having constanttensorcoefficientsin

cylindrical coordinateson the whole circular waveguidecross-sectionmust
be homogeneous. The same condition is independently obtained here by
considering the continuity condition at p = O for an inhomogeneous medium.

TABLE I
IN ORDER TO FIND THE MODES OF A CIRCULAR WAVEGUIDE, CONDITIONS AT

r = OARE REQUIREDm ENSURE FIELD SOLUTIONS WHICH ARE BOUNDEDAND
CONTINUOUSWHmECROSSINGTHEPOLARAxn IN THE TABLE, b.c. MEANS

BOUNDARY CONDtTION, WHILE C.C. MEANS CONTINUITY CONDtTION FOR
m = +1, a., a ~ DENOTE Two (ARBITRARY) CONSTANTS. FOR AN ISOTROPIC

MEDIUM, THE CONDITIONS REPORTED IN THE TABLE REDUCE TO THE

UstrAL CONDITIONS SATISFIED BY THE BESSEL FUNCTIONS Jm (-yr)

II fl

II Regularity conditions at r=O for TM~ and TEWS
modes in a circular bianisotropic waveguide II
m=il ?71= *1 llm122

b.c e~+.7vez=0 e.=o ez=O

c13ez= cne. =

{

a. for E22– cl, = ]m (clt + tzI)
cc ,_

e, — e;=o
= q23e== O 0 for C,,– c,, # jm (s,,+ 6,,)

b.c. h;+juh.=o h,=O h,=O

assume that, unphysically, conditions (11) are not satisfied,

the mathematical solutions of the differential problem do not

fulfil the continuity condition (for example, one finds that the

m = O modes violate the continuity condition).

In general (i.e., for ~lz # O,qlz # O and/or E12 # O), the

transverse field components of a circular waveguide filled with

a homogeneous bianisotropic material are, for given values of

P, D, and T, different from the ones observed in the isotropic
case having normalized radial propagation constant equal to

Py, even if the longitudinal components are given by the same

Bessel functions of the first kind [see, for example, (25)].

Obviously, the bianisotropic filler of a coaxial waveguide

does not need to comply with conditions (11); in this case the

filler can also be realized as a coaxial layered (inhomogeneous)

structure and one has more degrees of freedom since (23 and

?723 are not constrained to zero.

C. TEB Modes in Coaxial Waveguides

The results derived previously are not valid for v = O,

where (16) yields

~ = ‘V12 +&2 + /(7h2 – C12)2 +46

2
(30)

with ~ = +@ for isotropic material. However, this case is

simpler than the general one and is readily solved in an analytic

way, thereby proving the possible existence of a TEB mode

in a coaxial waveguide, that is to say a mode having a zero

longitudinal component for both the e and B fields. In fact,

for coaxial waveguides at T = O, the boundary conditions and

Maxwell’s equations might be satisfied by eigenfields having

the following form:

e = ~ exp(–jur)
0 @(.z)p

r

(31)



1474 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 44, N0. 8, AUGUST 1996

though one has to distinguish between the two cases u = O

and u # O to assess the possible existence of this mode and

to express the h and D fields.

1) For u = O (e.g., isotropic or homogeneous bianisotropic

material), there always exists a TEB mode which is also

TEM. In this case one has exp(–jur) = 1 and
.

h=
k.

—O(z)
E]I@ – &21j

D -<12 r

2) For u # O (and ~ = O), there exists a TEB mode only if

P33 = ~&33 (33)

&ll&33 = &13&31. (34)

In this case the possibility of considering isotropic or

homogeneous bianisotropic materials is excluded by

condition (34), and the TEB mode is not transverse

magnetic (i.e., it is a TE mode); the h and D fields are2

‘=~[%- (?+ ’31) ’+’1121

&ll u .
—— —z1 (35)

TP

with:

M=ko
exp(–~~r) ~(z).

B – <12
(36)

Since 2. V x e = O [see (3 l)], one can define a potential

function V!, in the transverse plane z = const., such that
e = –VtIU (with Vt = V – 2c9/~,z). For a coaxial waveguide

of inner radius p = b and outer radius p = a, the voltage

difference VU(Z) between the inner and outer conductor is

expressed in terms of sine and cosine integrals

Vu(z) = @(z)[Ci(ukOp) – jSi(ukOp)]~~f (37)

with VO(Z) = Q(z) ln(a/b) for u = O. The current lU(Z)

flowing in the inner conductor is easily evaluated by use of

Maxwell–AmpSre’s law. In particular, for u = O, this current is

simply given by the circulation of H = h/Z., since 2. D = O.

The current 1.(z) has the following general expression

l“(Z)=:%3‘xp(-~uk”b)o(z)(38)

which, for u = O, reads 10(z) = 27rYOs11@(.z)/(~ – ~12).

The impedance of the cable for the TEB mode is ZC =

Vu/IU which, for u = O, yields

(39)

In the limit of isotropic material, (39) yields the well-known

result 2. = ~ In(a/b), with Z = 20 ~.

2Notice that (20), (21) under conditions (33), (34) yield s, = Sh = – 1; in
this particular case, the coefficient multiplying Tz in both (14) and (15) does

D. Sectoral Waveguide

Let us now consider a sectoral waveguiding structure whose

perfectly conducting walls bound the region {b < p < a; O <

@ < q$O}, with q50< 2x. The sectoral waveguide is obtained

by filling with perfectly conducting material the angular region

d: {00–2m <$$< O} of a coaxial waveguide with outer radius
p = a and inner radius p = b > O; the case b = O is excluded

because of the complexity of the boundary conditions at the

edge of the wedge.

Even under conditions (6)–(10), the modes supported by this

structure are, in general, hybrid modes. TM and TE modes may

appear only when it is possible to combine the two modes of

index +m of the coaxial waveguide into a single mode, so to

satisfy the boundary condhions on the metal septum. Hence,

TE and TM modes may exist only under the supplemental

conditions (24); the differential equations (14) and (15) relative

to these modes become even in m.

In fact, it is easily found that the sectoral waveguide

supports TM modes only when conditions (24) are valid; the

TM eigenfields have the following form (the fields vanish for
m, = ()):

e = @ (z)[(eP~j+e=~.2) sin rn~-jrn~e~c cos w@]

h = @ (z)[(hp~p+hd, ~) sin rn#+jm(hpCj+h4C~) cos m@]

‘/(
m,=n T with n > 1 and integer (40)

with

1
—

--2
‘Y

TM

r

—VE21

v&ll

E22

r
E12

——

r

[P – <12 I

-1I
o

Y’ —E21— e~a
72 &ll

o
0

ez,

(41)

where the subscript s (c) refers to terms proportional to

sin mf# (COSmq$)

Conversely, the sectoral waveguide supports TE modes only

if E12 = E21 = O (which is a particular case of conditions (24),

with &23 = &32 = O and ,LL12= V21 = jJ23 = K32 = O). In

this case, the TE eigenfields have the following form (valid

also for m = O):

e = @(.z)[Jedc cos rruj$ + jmeP~p sin mq$]

h = @(z) [(hPc@ + h.=;) cos md + jmho, ?sin m~]

m.n~ with n > 0 and integer (42)
vanish. $0
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with:

r~ 1

rol

~ [1–Ull—
7 h:c . (43)
70

P – 7112

The previous eigenfields fulfil the boundary conditions on the

metal septum; to solve (14), (15) one has to further set ez. = O

and h~C = –juhzc at r = lcoa, kob.

IV. NUMERICAL RESULTS

Our differential problem is easily solved numerically by

applying the finite element method [11 ]. Along the waveguide

radial axis n nodes are defined as the extreme points of

(n – 1) adjacent subintervals. The first node is located at

r = k.b, the last one at r = kOa, a and b being the outer

and inner waveguide radius, respectively, (b = O for a circular

waveguide).

By introducing Hermite expansion functions on each subin-

terval, one has to solve for 2rr unknowns; these are the values

of the longitudinal field component (e= or hz ) and of its first

derivative at each of the n nodes [12]. A Galerkin testing

procedure is then applied to obtain a discretized problem

in matrix form. Notice that a similar approach has also

been used in the numerical solution of integral equations

in [13], though a delta sampling procedure was there used

to test the equations. Cubic Hermite expansion functions

were chosen here to allow the strong enforcement of the

boundary conditions; as opposite to what happens when using

linear expansion functions (elements), which would require to

implement the boundary conditions of our problem in a weak

form.

For any given value of the azimuthal index m, the differ-

ential problem assumes the following discretized form:

&+mJx+p2Gx’o (44)

where xl, ~ and G are square sparse matrices having band-

width equal to six; z is the unknown column vector (eigen-

vector), and ~ is the unknown normalized longitudinal prop-

agation constant (eigenvalue). By setting y = @s, problem

(44) is reduced to the following linear generalized eigenvalue

problem (of doubled size):

[$~JKl+p[f flkl ‘K] ’45)

where Q is the null matrix; problem (45) is numerically solved

by use of standard library routines.

All the results reported in this section have been obtained

with n = 28 (i.e., 56 unknowns) and are relative to E = 41

and p = 1. This choice of parameters renders the differential

equa~ons even in m [see (24)], a condition which simplifies

the graphical presentation of the results. Furthermore, for sake

@i

6.0 1.0
kOa 2.0 3.0

Fig. 1. Dispersiondiagram of the first modes of a circular waveguide of
radius a, filled with isotropic material g = 41, p = ~,{ = Y = ~. The
exact analytical results (solid-lines) are compared ~ith the dashed-line results,

obtained numerically.

of simplicity, the parameters of the examples discussed in this

Section are assumed to be frequency independent, even though

our numerical code can directly deal with frequency-dispersive

media.

In Fig. 1 we report the dispersion diagram of the first modes

of a circular isotropic waveguide (c = q = Q) of radius a.

The figure reports the value of th= nofialized longitudinal

constant (3 when the modes are above cutoff and the value

of k. a Im[@] when modes are below cutoff. The dashed-line

results, obtained numerically, are compared with the analytical

results reported by solid-lines. Notice that our numerical

results are undistinguishable from the analytical ones; the only

difference is due to the presence of one unphysical solution

of the TE equation for m = O. In the figure, this solution

is labeled as TEOO and yields ~ = 2V(kOa), which is the @-

value given by (30) for ~ = O. Since the numerically obtained

TEOO eigenfield is constant along the waveguide radial axis

(h. = const .), all the TEOO transverse field components are

zero. Hence, the TEOO solution can be regarded as a static

solution and must be discarded. However, notice that this is a

correct solution of (15), (28) for m = O and 7 = O; that is to

say for ~ as given by (30).

Fig. 2 reports the numerically obtained dispersion diagrams

for the first two modes (TE1l and TMO1 ) of a circular

waveguide of radius a, filled with the homogeneous Iossless

bianisotropic material (23 = V23 = O, (12 = –v12 = .i.s;

for s = 1.2, 0.6 and O (isotropic case). For this choice

of parameters T2 is an even function of ~ and the figure

reports only the value of ~ relative to progressive waves

(~ = ~P), since B. = –~, for regressive waves. Fig. 2 does
not report the TEOO unphysical solutions; for s # O the h=

field component of these numerical solutions is not constant

in p, but it does yield zero transverse field components of E

and H, as in the isotropic case s = O. The TEOO dispersion
diagrams always exhibit a constant value of @ for all koa,

with ~ given by (30); for the other modes, the dispersion

diagrams for large values of koa asymptotically tend to this

value of /3. Notice also that the dispersion diagrams of Fig. 2

coincide with those relative to an isotropic material with

cp = y2 + ~2 = 6 – V12~12 = 4 – S2. In fact, in the case of

Fig. 2 one hasp = 1 so that, for example, the two TEI1 modal
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Fig. 2. TE1 ~ and TMo ~ numerically obtained dkpersion diagrams

for a circular waveguide of radius a, filled with bianisotropic materird
~ = 4~, p = Z,(23 = ~23 = O,~lz = –~12 = js: for .s = 1.2, 0.6 and

O (isotro~c case). The dkpersion diagrams in the figure coincide with those
relative to an isotropic material with Ep = yz + ~2 = f5— qI zf12 = 4-– 52.

solutions for the longitudinal magnetic field can be written as

follows:

(46)

The corresponding TE1l modal electric fields are

[ (%)+%x)] (“)E=Q(z)&J;(~?’)
while Ht = YO(~ + js)2 x E is the transverse magnetic field.

Thus, the TE11 transverse electric and magnetic fields are in

quadrature for /3 = O and s # O while, as well known, Ht = O
in the isotropic (s = O) case at @ = O.

Fig, 3 reports the TE1l dispersion diagram of a circular

waveguide of radius a, filled with the homogeneous material

&23 = TM = 0,&12 = qlz = s(1 + j), where s = 1.2 and
the superscript * denotes a complex conjugate. In this case 72

is an even function of (~ – s), and one finds that ~ has a

constant real part equal to s below cutoff. The figure reports

the results for both the regressive and progressive mode;

asymptotically, for large value of kOa, one has /3 = – 0.4,

2.8 for regressive and progressive mode, respectively (in fact,

(30) yields ~ = s + ~~).

Fig. 4 report the dispersion diagrams of coaxial bian-

isotropic waveguides of outer radius p = a, inner radius

p = b with a/b = 12.2. The coefficients of ~ and ~ where

choosen so to obtain fir = —/3P for regressive ‘modes,

where /3 = ,6P for progressive waves. Fig. 4(a) shows the

results for the first four modes obtained with a homogeneous

filler &z3 = q~3 = O (i.e., u = O), ~lz = –qlz = js; for

s = 1.2 and O (isotropic case). In this case the TEB mode

is a TEM mode with impedance Z. m 75[0], (60 – j45) [Q]

for s = O and 1.2, respectively. Since the coefficients of

the constitutive tensors and the cable impedance must be

real at w = O, the results of Fig. 4 are not significant at

w = O; obviously, as said previously, one can not neglect

frequency-dispersion toward zero frequency. Fig. 4(b) reports

the dispersion diagrams of the first three modes of a coaxial

cable with u # O (inhomogeneous filler); these results were

obtained by setting (12 = (23 = –q12 = –~23 = jl.2.
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Fig. 3. Numerically obtained dispersion diagram of the first mode (TE1 ~)
of a circular waveguide of radius a, filled with bianisotropic material
~= 4~, P =~,~23 = q23 = O,fIZ = V~2 = 1.2 (l+j). Theiigure reports

the resul~ relative to both the regressive and progressive mode. Notice how

,6 has a constant real part equal to 1.2 below cutoff.
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Fig. 4. Numerically obtaiued dkpersion diagrams for coaxial wavegmdes
having outer radlrrs p = a, inner radius p = b, with alb = 12.2: the
waveguide bianisotropic filler has E = 41, p = 1. (a) at top, the figure reports
the results obtained with (z3 = 023 = O. f~z = –VIZ = js; for s = 1.2 and

O (isotropic case). (b) at bottom, the dispersion diagrams obtained by setting

<12 = (23 = ‘V12 = ‘~23 = J1.2 Me shown; in this case the TEM mode
is not supported and the first mode of the coaxial cable is the TE1 ~.

Since this structure does not support a TEB mode (see

Section III-C) the first mode of the coaxial cable is the TEII.

The results of Fig. 4 illustrate the effects on the dispersion

diagrams due to different choices of the q and < parameters.

For diagonal Q and p it is sufficient to ~hoos~ [23 # O to

eliminate the TEM mode of the coaxial cable; for f23 = O

the impedance of the TEM mode is modified by choosing an

imaginary value for ~lz, while the cable remains Iossless for

723 = ‘[~31 ~12 = ‘t?2.
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V. CONCLUSION

The conditions under which TE and TM modal decoupling

occurs in metallic circular waveguides, coaxial cables and sec-

toral waveguides filled with bianisotropic material have been

presented. For the different waveguides considered, the modal

(TE and TM) transverse-field components have been expressed

in terms of the longitudinal modal components; these, in turn,

are the eigensolutions of second-order differential equations,

subject to appropriate boundary conditions. The boundary con-

ditions have been derived, with special attention to those useful

to (numerically) deal with the circular waveguide problem.

Since our differential model has been derived by working

in the frequency-domain, the results presented are directly

applicable to consider frequency-dispersive media.

The differential problem has been numerically solved by

applying the Finite Element method and by expanding the

modal longitudinal field components in terms of Hermite

cubic functions. The dispersion relations together with the

waveguide eigenfield expressions were numerically obtained

as solution of linear generalized eigenvalue problems. Sev-

eral numerical results have been reported to illustrate the

different effects one can obtain by varying the various tensor

coefficients of the waveguide bianisotropic filler.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

mFERENCES

J. A. Kong, Theory of Electromagnetic Waves. New York Wiley, 1975.
Electromagnetic Wave Theory. New York: Wiley, 1986.

~ ‘O’Dell. The Electrodynamics of Magnetoelectric Media. New
York: Nortl-Holland, 1970. - “ -
R. D. Graglia, P. L. E. Uslenghi, and R. E. Zich, “Dispersion relation
for bianis~nopic materkds an~ its symmetry propertie~,” IEEE Trans.
Antennas Propagat., vol. 39, no. 1, pp. 83–90,Jan. 1991.

“Reflection and transmissionfor phrnar structuresof bian-
iso~o~lcmedia;’ Eleco-omagrretics, vol. 11, no. 2, pp. 193-208, 1991.
H.-Y. Yang and P. L. E. Uslenghi, “Planar biarrisotropic waveguides,”

Radio Sci., vol. 28, pp. 919-927, 1993.
J. D. Ali, “Theory of parallel-plate waveguides partially filled with mag-
netoelectric materials,” Ph.D. dissertation, Univ. of Illinois at Chicago,

1994.
P. L. E. Uslenghi, “TE-TM decoupling for guided propagation in
bianisotropic media,” IEEE Trans. Antennas Propagat., accepted.
R. D. Graglia, M. S. Snrto, and P. L. E. Uslenghi, “Theory of coaxial
cable tilled with bianisotropic material,” in Proc. PIER Symp., Seattle,

WA, July 1995, p. 287.
I. V. Linden, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen,

Electromagnetic Waves in Chiral and Bi-Isotropic Media. Norwood,
MA: Artech House, 1994.
0. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th
ed. New York: McGraw-Hill, 1989.
R. Vichnetvetsky, Computer Methods for Partial Differential Equations,
vol. 1. Englewood Cliffs, N. J.: Prentice-Hall, 1981.
R. D. Oraglia, P. L. E. Uslenghi, R. Vitiello, and U. D’Elia, “Elec-
tromagnetic scattering for oblique incidence on impedance bodies of
revolution,” IEEE Trans. Antennas Propagat., VOL 43, no. 1, pp. 11–26,

Jan. 1995.

Roberto D. Gragfia(S’83–M’83-SM’90) wasborn
in Turin, Italy, on July 6, 1955. He received the
Laurea degee (summa cum laude) in electronic
engineeringfrom the Polytechnicof Turin in 1979,
and the Ph.D. degreein electrical engineeringand
computersciencefrom the University of Illinois at
Chicago in 1983.

In 1980 to 1981, he was a ResearchEngineer
at CSELT, Italy, where he conductedresenrcbon
microstrip circuits. In 1981 to 1983, he was a
Teaching and Research Assistant at the University of

Illinois, Chicago; and then, since ;992, a Researcher with the Italian Nati~nal
Research Council (CNR). In 1991 and in 1993 he was Associate Visiting
Professor at the University of Illinois, Chicago. He is currently Associate

Professor of Electrical Engineering at the Polytechnic of Turin, Italy, and
Associate Editor of the IEEE TRANSACTIONSON ANTENNAS AND PROPAGATION.

His areas of interest are numerical methods for high and low frequency

electromagnetic, theoretical and computational aspects of scattering and

interactions with complex media, waveguides, antennas, electromagnetic

compatibility, and low–frequency phenomena.

Maria S. Sarto (M’93) wasborn in Rome,Italy, on
May 20, 1968. She receivedthe Laurea degreein
electricalengineeringfrom the University of Rome
“La Sapienza”in 1992.

Since 1994, she has been Researcher at the Uni-
versity of Rome. Her research activity is mainly

in the field of electromagnetic compatibility, and

includes fast transient analysis and modeling of
multiconductor networks, field propagation.

Piergiorgio L. E. UslengM (SM’7&F’90) was born in Turin, Italy, in 1937.
He received the doctorate in electrical engineering from the Polytechnic of
Turin, and the M. S. and Ph.D. degrees in physics from the University of

Michigan, Ann Arbor, in 1960, 1964, and 1967, respectively.

He has been an Assistant Professor at the Polytechnic of Turin (1961),
Associate Research Engineer at Conduction Corporation, Ann Arbor, MI

(1962 to 1963), and a Research Physicist at the Radiation Laboratory of the

University of Michigan (1963 to 1970). In 1970, he joined the University of
Illinois, Chicago, where he held a number of positions, incluchg Founder and

first Director of the Communications Laboratory ( 1976 to 1978), Founder and
Director of the Electromagnetic Laboratory ( 1991 to present), Professor of
Electrical Engineering and Computer Science (1974 to present), and Associate
Dean of the College of Engineering (1982 to 1987; 1994 to present). He has

published five books and over 150 papers in electromagnetic theory, nntennas,
microwaves, scattering, modem optics, and applied mathematics.

Dr. Uslenghi served as Secretag-Treasurer, Vice-Chair, and Chair of the

Joint AP/MTT Chicago Chapter of IEEE twice, in 1975 to 1978 and 1989
to 1992. He was the General Chairperson of the 1992 AP-S Intematiomd

Symposium and URSVNEM Meeting held in Chicago. He is a member
of the AP-S AdCorn, of the joint committee on future symposia of AP-

S and USNC/URSI-B, the chair of the Technical Activities Committee of

USNCKJRSI-B, and the Vice-Chair Elect of Commission B of USNCKJRSI.
He is editor of the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,

the past editor of Electromagnetic and has served for many years on the
editorial bozuds of the Journal of Electromagnetic Waves and Applications,
the European Journal of Telecommunications, and Alta Frequenza. He is a
member of Phi Beta Kappa, Sigma Xi, and Ursi Commissions B and D.


